Part Number Hot Search : 
CPC1002N A2557EEB HYB18T 62URO EPJ4017 74HC157 64188 KBP202
Product Description
Full Text Search
 

To Download IRG4BC15UD Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  IRG4BC15UD insulated gate bipolar transistor with ultrafast soft recovery diode features e g n-channel c v ces = 600v v ce(on) typ. = 2.02v @v ge = 15v, i c = 7.8a parameter min. typ. max. units r q jc junction-to-case - igbt CCC CCC 2.7 r q jc junction-to-case - diode CCC CCC 7.0 c/w r q cs case-to-sink, flat, greased surface CCC 0.50 CCC r q ja junction-to-ambient, typical socket mount CCC CCC 80 wt weight CCC 2 (0.07) CCC g (oz) thermal resistance ultrafast copack igbt 03/20/01 absolute maximum ratings parameter max. units v ces collector-to-emitter voltage 600 v i c @ t c = 25c continuous collector current 14 i c @ t c = 100c continuous collector current 7.8 i cm pulsed collector current ? 42 a i lm clamped inductive load current ? 42 i f @ t c = 100c diode continuous forward current 4.0 i fm diode maximum forward current 16 v ge gate-to-emitter voltage 20 v p d @ t c = 25c maximum power dissipation 49 p d @ t c = 100c maximum power dissipation 19 t j operating junction and -55 to +150 t stg storage temperature range c soldering temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) mounting torque, 6-32 or m3 screw. 10 lbf?in (1.1 n?m) benefits w t o -22 0 ab www.irf.com 1 ? ultrafast: optimized for high frequencies from10 to 30 khz in hard switching ? igbt co-packaged with ultra-soft-recovery antiparallel diode ? industry standard to-220ab package ? best value for appliance and industrial applications ? high noise immune "positive only" gate drive- negative bias gate drive not necessary ? for low emi designs- requires little or no snubbing ? single package switch for bridge circuit applications ? compatible with high voltage gate driver ic's ? allows simpler gate drive pd - 94082a
IRG4BC15UD parameter min. typ. max. units conditions q g total gate charge (turn-on) CCC 23 35 i c = 7.8a qge gate - emitter charge (turn-on) CCC 4.0 6.0 nc v cc = 400v q gc gate - collector charge (turn-on) CCC 9.6 14 v ge = 15v t d(on) turn-on delay time CCC 17 CCC t j = 25c t r rise time CCC 20 CCC ns i c = 7.8a, v cc = 480v t d(off) turn-off delay time CCC 160 240 v ge = 15v, r g = 75 w t f fall time CCC 83 120 energy losses include "tail" and e on turn-on switching loss CCC 0.24 CCC diode reverse recovery. e off turn-off switching loss CCC 0.26 CCC mj e ts total switching loss CCC 0.50 0.63 t d(on) turn-on delay time CCC 16 CCC t j = 150c, t r rise time CCC 21 CCC ns i c = 7.8a, v cc = 480v t d(off) turn-off delay time CCC 180 CCC v ge = 15v, r g = 75 w t f fall time CCC 220 CCC energy losses include "tail" and e ts total switching loss CCC 0.76 CCC mj diode reverse recovery. l e internal emitter inductance CCC 7.5 CCC nh measured 5mm from package c ies input capacitance CCC 410 CCC v ge = 0v c oes output capacitance CCC 37 CCC pf v cc = 30v c res reverse transfer capacitance CCC 5.3 CCC ? = 1.0mhz t rr diode reverse recovery time CCC 28 42 ns t j = 25c CCC 38 57 t j = 125c i f = 4.0a i rr diode peak reverse recovery current CCC 2.9 5.2 a t j = 25c CCC 3.7 6.7 t j = 125c v r = 200v q rr diode reverse recovery charge CCC 40 60 nc t j = 25c CCC 70 110 t j = 125c di/dt 200a/s di (rec)m /dt diode peak rate of fall of recovery CCC 280 CCC a/s t j = 25c during t b CCC 240 CCC t j = 125c parameter min. typ. max. units conditions v (br)ces collector-to-emitter breakdown voltage ? 600 CCC CCC v v ge = 0v, i c = 250a d v (br)ces / d t j temperature coeff. of breakdown voltage CCC 0.63 CCC v/c v ge = 0v, i c = 1.0ma v ce(on) collector-to-emitter saturation voltage CCC 2.02 2.4 i c = 7.8a v ge = 15v CCC 2.56 CCC v i c = 14a CCC 2.21 CCC i c = 7.8a, t j = 150c v ge(th) gate threshold voltage 3.0 CCC 6.0 v ce = v ge , i c = 250a d v ge(th) / d t j temperature coeff. of threshold voltage CCC -10 CCC mv/c v ce = v ge , i c = 250a g fe forward transconductance ? 4.1 6.2 CCC s v ce = 100v, i c = 7.8a i ces zero gate voltage collector current CCC CCC 250 a v ge = 0v, v ce = 600v CCC CCC 1400 v ge = 0v, v ce = 600v, t j = 150c v fm diode forward voltage drop CCC 1.5 1.8 v i c = 4.0a CCC 1.4 1.7 i c = 4.0a, t j = 150c i ges gate-to-emitter leakage current CCC CCC 100 na v ge = 20v switching characteristics @ t j = 25c (unless otherwise specified) electrical characteristics @ t j = 25c (unless otherwise specified)
IRG4BC15UD fig. 1 - typical load current vs. frequency (load current = i rms of fundamental) fig. 2 - typical output characteristics fig. 3 - typical transfer characteristics 0.1 1 10 100 0.1 1 10 v , collector-to-emitter volta g e (v) i , collector-to-emitter current (a) ce c v = 15v 20 s pulse width ge t = 25 c j t = 150 c j 0.1 1 10 100 5.0 10.0 15.0 20.0 v , gate-to-emitter voltage (v) i , collector-to-emitter current (a) ge c v = 50v 5 s pulse width cc t = 150 c j t = 25 c j 0.1 1 10 100 f , frequency ( khz ) 0 2 4 6 8 10 load current ( a ) duty cycle : 50% tj = 125c tsink = 90c gate drive as specified turn-on losses include effects of reverse recovery power dissipation = 11w 60% of rated voltage ideal diodes
IRG4BC15UD fig. 6 - maximum effective transient thermal impedance, junction-to-case fig. 5 - typical collector-to-emitter voltage vs. junction temperature fig. 4 - maximum collector current vs. case temperature 0.01 0.1 1 10 0.00001 0.0001 0.001 0.01 0.1 1 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response) 25 50 75 100 125 150 0 2 4 6 8 10 12 14 t , case temperature ( c) maximum dc collector current(a) c -60 -40 -20 0 20 40 60 80 100 120 140 t j , junction temperature (c) 1.0 2.0 3.0 4.0 v ce , collector-to emitter voltage (v) i c = 14a v ge = 15v 80s pulse width i c = 7.8a i c = 3.9a
IRG4BC15UD fig. 7 - typical capacitance vs. collector-to-emitter voltage fig. 8 - typical gate charge vs. gate-to-emitter voltage fig. 9 - typical switching losses vs. gate resistance fig. 10 - typical switching losses vs. junction temperature 0 10 20 30 40 50 r g , gate resistance ( w ) 0.42 0.44 0.46 0.48 total switching losses (mj) v cc = 480v v ge = 15v t j = 25c i c = 7.8a -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , junction temperature (c) 0.1 1 10 total switching losses (mj) r g = 75 w v ge = 15v v cc = 480v i c = 14a i c = 7.8a i c = 3.9a 0 5 10 15 20 25 0 4 8 12 16 20 q , total gate char g e (nc) v , gate-to-emitter voltage (v) g ge v = 400v i = 7.8a cc c 1 10 100 0 200 400 600 800 v , collector-to-emitter voltage (v) c, capacitance (pf) ce v c c c = = = = 0v, c c c f = 1mhz + c + c c shorted ge ies g e g c , ce res g c oes ce g c c ies c oes c res
IRG4BC15UD fig. 11 - typical switching losses vs. collector-to-emitter current fig. 12 - turn-off soa 2 4 6 8 10 12 14 16 i c , collector current (a) 0.0 0.4 0.8 1.2 1.6 2.0 total switching losses (mj) r g = 75 w tj = 150c v ge = 15v v cc = 480v 0.1 1 10 100 0.0 1.0 2.0 3.0 4.0 5.0 6.0 fm forward volta g e drop - v ( v ) t = 150c t = 125c t = 25c j j j fig. 13 - maximum forward voltage drop vs. instantaneous forward current 1 10 100 1000 v ds , drain-to-source voltage (v) 1 10 100 c, capacitance(pf) v ge = 20v t j = 125 safe operating area
IRG4BC15UD fig. 16 - typical stored charge vs. di f /dt fig. 17 - typical di (rec)m /dt vs. di f /dt, fig. 14 - typical reverse recovery vs. di f /dt fig. 15 - typical recovery current vs. di f /dt di (rec) m/dt- (a /s) qrr- (nc) irr- ( a) trr- (nc) 20 25 30 35 40 45 50 100 1000 f di /dt - ( a/ s ) i = 8.0a i = 4.0a f f v = 200v t = 125c t = 25c r j j 0 2 4 6 8 10 12 14 100 1000 f i = 8.0a i = 4.0a v = 200v t = 125c t = 25c r j j di /dt - ( a/ s ) f f 0 40 80 120 160 200 100 1000 f di /dt - ( a/ s ) i = 8.0a i = 4.0a v = 200v t = 125c t = 25c r j j f f 100 1000 100 1000 f di /dt - ( a/ s ) a i = 8.0a i = 4.0a v = 200v t = 125c t = 25c r j j f f
IRG4BC15UD same type device as d.u.t. d.u.t. 430f 80% of vce fig. 18a - test circuit for measurement of i lm , e on , e off(diode) , t rr , q rr , i rr , t d(on) , t r , t d(off) , t f t1 ic vce t1 t2 90% ic 10% vce td(off) tf ic 5% ic t1+ 5 s vce ic dt 90% vge +vge eoff = fig. 18b - test waveforms for circuit of fig. 18a, defining e off , t d(off) , t f vce ie dt t2 t1 5% vce ic ipk vcc 10% ic vce t1 t2 dut voltage and current gate voltage d.u.t. +vg 10% +vg 90% ic tr td(on) diode reverse recovery energy tx eon = erec = t4 t3 vd id dt t4 t3 diode recovery w aveforms ic vpk 10% vcc irr 10% irr vcc trr qrr = trr tx id dt fig. 18c - test waveforms for circuit of fig. 18a, defining e on , t d(on) , t r fig. 18d - test waveforms for circuit of fig. 18a, defining e rec , t rr , q rr , i rr vd ic dt vce ic dt ic dt vce ic dt
IRG4BC15UD v g gate signal device under tes t current d.u.t. voltage in d.u.t. current in d1 t0 t1 t2 d.u.t. v * c 50v l 1000v 6000f 100v figure 19. clamped inductive load test circuit figure 20. pulsed collector current test circuit r l = 480v 4 x i c @25c 0 - 480v figure 18e. macro waveforms for figure 18a's test circuit
IRG4BC15UD case outline to-220ab notes: ? repetitive rating: v ge =20v; pulse width limited by maximum junction temperature ? v cc =80%(v ces ), v ge =20v, l=10h, r g = 75 w ? pulse width 80s; duty factor 0.1%. ? pulse width 5.0s, single shot. 0.55 (.022) 0.46 (.018) 3 x 2.92 (.115) 2.64 (.104) 1.32 (.052) 1.22 (.048) - b - 4.69 (.185) 4.20 (.165) 3.78 (.149) 3.54 (.139) - a - 6.47 (.255) 6.10 (.240) 1.15 (.045) m in 4.06 (.160) 3.55 (.140) 3 x 3.96 (.160) 3.55 (.140) 3 x 0.93 (.037) 0.69 (.027) 0.36 (.014) m b a m 10.54 (.415) 10.29 (.405) 2.87 (.113) 2.62 (.103) 15.24 (.600) 14.84 (.584) 14.09 (.555) 13.47 (.530) 1.40 (.055) 1.15 (.045) 3 x 2.54 (.100) 2x 1 2 3 4 conforms to jedec outline to-220ab d im e ns io ns in m illim e ters a nd ( inches ) lead assignments 1 - g a te 2 - c o lle c to r 3 - em it te r 4 - c o lle c to r notes: 1 dimensions & tolerancing per ansi y14.5m, 1982. 2 controlling dimension : inch. 3 d im e n s io n s a r e s h o w n m illim e te r s ( inches ) . 4 conforms to jedec outline to-220ab. data and specifications subject to change without notice. this product has been designed and qualified for the industrial market. qualification standards can be found on irs web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 03/01


▲Up To Search▲   

 
Price & Availability of IRG4BC15UD

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X